DC insulator dielectrophoretic applications in microdevice technology: a review.

نویسندگان

  • Soumya K Srivastava
  • Aytug Gencoglu
  • Adrienne R Minerick
چکیده

Dielectrophoresis is a noninvasive, nondestructive, inexpensive, and fast technique for the manipulation of bioparticles. Recent advances in the field of dielectrophoresis (DEP) have resulted in new approaches for characterizing the behavior of particles and cells using direct current (DC) electric fields. In such approaches, spatial nonuniformities are created in the channel by embedding insulating obstacles in the channel or flow field in order to perform separation or trapping. This emerging field of dielectrophoresis is commonly termed DC insulator dielectrophoresis (DC-iDEP), insulator-based dielectrophoresis (iDEP), or electrodeless dielectrophoresis (eDEP). In many microdevices, this form of dielectrophoresis has advantages over traditional AC-DEP, including single material microfabrication, remotely positioned electrodes, and reduced fouling of the test region. DC-iDEP applications have included disease detection, separation of cancerous cells from normal cells, and separation of live from dead bacteria. However, there is a need for a critical report to integrate these important research findings. The aim of this review is to provide an overview of the current state-of-art technology in the field of DC-iDEP for the separation and trapping of inert particles and cells. In this article, a review of the concepts and theory leading to the manipulation of particles via DC-iDEP is given, and insulating obstacle geometry designs and the characterization of device performance are discussed. This review compiles and compares the significant findings obtained by researchers in handling and manipulating particles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance characterization of an insulator-based dielectrophoretic microdevice.

Dielectrophoresis (DEP), the motion of particles in nonuniform electric fields, is a nondestructive electrokinetic (EK) transport mechanism can be used to concentrate and separate bioparticles. Traditionally, DEP has been performed employing microelectrodes, an approach that is expensive due to the cost of microelectrode fabrication. An alternative is insulator-based DEP (iDEP), an inexpensive ...

متن کامل

A review on recent applications of brushless DC electric machines and their potential in energy saving

Electric motors are the largest consumer of world electric energy, consuming more than twice as much as lighting, the next largest consumer. Electric motors account for between 43 and 46% of all global electricity consumption approximately. They give rise to about 6 040 Mt of CO2 emissions. End‐users approximately spend USD 565 billion per year on electricity [1]. In recent years, increase in e...

متن کامل

A review on recent applications of brushless DC electric machines and their potential in energy saving

Electric motors are the largest consumer of world electric energy, consuming more than twice as much as lighting, the next largest consumer. Electric motors account for between 43 and 46% of all global electricity consumption approximately. They give rise to about 6 040 Mt of CO2 emissions. End‐users approximately spend USD 565 billion per year on electricity [1]. In recent years...

متن کامل

Insulator-based Dielectrophoresis of Protein Particles Using Direct Current Electric Fields

Dielectrophoresis is a method of rapid response with sufficient selectivity for manipulation and separation of bioparticles, such as: microorganisms and biomolecules. Due to the great importance of proteins in the biotechnological and pharmaceutical processes, the present study demonstrates the potential of the insulator-based dielectrophoresis (iDEP) and DC electric fields to manipulate and co...

متن کامل

A Novel SOI MESFET by Implanted N Layer (INL-SOI) for High Performance Applications

This paper introduces a novel silicon-on-insulator (SOI) metal–semiconductor field-effect transistor (MESFET) with an implanted N layer (INL-SOI MESFET) to improve the DC and radio frequency characteristics. The DC and radio frequency characteristics of the proposed structure are analyzed by the 2-D ATLAS simulator and compared with a conventional SOI MESFET (C-SOI MESFET). The simulated result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical and bioanalytical chemistry

دوره 399 1  شماره 

صفحات  -

تاریخ انتشار 2011